Alcohol formula

Difference in electron fluctuation between trimethylamine N-oxide and tert-butyl alcohol in water

  • Yancey, PH, Clark, ME, Hand, SC, Bowlus, RD & Somero, GN Living with water stress: evolution of osmolyte systems. Science 2171214-1222 (1982).

    ADS CAS PubMed Google Scholar Article

  • Liao, Y.-T., Manson, AC, DeLyser, MR, Noid, WG & Cremer, PS Trimethylamine NOT-oxide stabilizes proteins via a separate mechanism compared to betaine and glycine. proc. Natl. Acad. Science. UNITED STATES 1142479-2484 (2017).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Bennion, BJ & Daggett, V. Counteraction of urea-induced protein denaturation by trimethylamine NOT-oxide: an atomic resolution chemical chaperone. proc. Natl. Acad. Science. UNITED STATES 1016433–6438 (2004).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Canchi, DR, Jayasimha, P., Rau, DC, Makhatadze, GI & Garcia, AE Molecular mechanism for the preferential exclusion of TMAO from protein surfaces. J.Phys. Chem. B 11612095–12104 (2012).

    CAS PubMed Article PubMed Central Google Scholar

  • Freda, M., Onori, G. & Santucci, A. Infrared study of hydrophobic hydration and hydrophobic interactions in aqueous solutions of third-butyl alcohol and trimethylamine-NOT-oxide. J.Phys. Chem. B 10512714–12718 (2001).

    CAS Google Scholar Article

  • Sinibaldi, R. et al. The role of water coordination in binary mixtures. Study of two model amphiphilic molecules in aqueous solution by molecular dynamics and NMR. J.Phys. Chem. B 1108885–8892 (2006).

    CAS PubMed Google Scholar Article

  • Rezus, YLA & Bakker, HJ Observation of water molecules immobilized around hydrophobic groups. Phys. Rev. Lett. 99148301 (2007).

    ADS CAS PubMed Google Scholar Article

  • Qvist, J. & Halle, B. Thermal signature of hydrophobic hydration dynamics. Jam. Chem. Soc. 13010345–10353 (2008).

    CAS PubMed Google Scholar Article

  • Panuszko, A., Bruździak, P., Zielkiewicz, J., Wyrzykowski, D. & Stangret, J. Effects of urea and trimethylamine-NOT-oxide on the water properties and secondary structure of hen egg white lysozyme. J.Phys. Chem. B 11314797–14809 (2009).

    CAS PubMed Google Scholar Article

  • Bakulin, AA, Pshenichnikov, MS, Bakker, HJ & Petersen, C. Hydrophobic molecules slow the hydrogen bonding dynamics of water. J.Phys. Chem. A 1151821–1829 (2011).

    CAS PubMed Google Scholar Article

  • Mazur, K., Heisler, IA & Meech, SR THz spectra and dynamics of aqueous solutions studied by the ultrafast optical Kerr effect. J.Phys. Chem. B 1152563-2573 (2011).

    CAS PubMed Google Scholar Article

  • Munroe, KL, Magers, DH & Hammer, NI Raman spectroscopic signatures of non-covalent interactions between trimethylamine NOT-oxide (TMAO) and water. J.Phys. Chem. B 1157699–7707 (2011).

    CAS PubMed Google Scholar Article

  • Hunger, J., Tielrooij, K., Buchner, R., Bonn, M. & Bakker, HJ Formation of complexes in an aqueous solution of trimethylamine-NOT-oxide solutions (TMAO). J.Phys. Chem. B 1164783–4795 (2012).

    CAS PubMed Google Scholar Article

  • Ma, J., Pazos, IM & Gai, F. Microscopic insights into the protein stabilizing effect of trimethylamine NOT-oxide (TMAO). proc. Natl. Acad. Science. UNITED STATES 1118476–8481 (2014).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Ganguly, P., Polák, J., van der Vegt, NFA, Heyda, J. & Shea, J.-E. Protein stability in TMAO and mixed urea-TMAO solutions. J.Phys. Chem. B 1246181–6197 (2020).

    CAS PubMed Google Scholar Article

  • Bandyopadhyay, D., Kamble, Y. & Choudhury, N. To what extent do the characteristics of aqueous solutions of third-butyl alcohol and trimethylamine-NOT-oxide? A molecular dynamics simulation study. J.Phys. Chem. B 1228220–8232 (2018).

    CAS PubMed Google Scholar Article

  • Markthaler, D., Zeman, J., Baz, J., Smiatek, J. & Hansen, N. Validation of trimethylamine-NOT– oxide force fields (TMAO) based on the thermophysical properties of aqueous solutions of TMAO. J.Phys. Chem. B 12110674–10688 (2017).

    CAS PubMed Google Scholar Article

  • Paul, S. & Patey, GN Why third-butyl alcohol associates in aqueous solution but trimethylamine-NOT-the oxide does not. J.Phys. Chem. B 11010514-10518 (2006).

    CAS PubMed Google Scholar Article

  • Usui, K. et al. Ab initio dynamics of liquid water in aqueous TMAO solution. J.Phys. Chem. B 11910597–10606 (2015).

    CAS PubMed Google Scholar Article

  • Imoto, S., Forbert, H. & Marx, D. Water structure and osmolyte solvation at high hydrostatic pressure: solutions of pure water and TMAO at 10 kbar versus 1 bar. Phys. Chem. Chem. Phys. 1724224–24237 (2015).

    CAS PubMed Google Scholar Article

  • Stirnemann, G., Duboué-Dijon, E. & Laage, D. Ab initio simulations of water dynamics in aqueous solutions of TMAO: effects of temperature and concentration. J.Phys. Chem. B 12111189–11197 (2017).

    CAS PubMed Google Scholar Article

  • Imoto, S., Forbert, H., and Marx, D. Aqueous solutions of TMAO seen by theoretical THz spectroscopy: hydrophilic water versus hydrophobic water. Phys. Chem. Chem. Phys. 206146–6158 (2018).

    CAS PubMed Google Scholar Article

  • Xie, WJ et al. A large hydrogen bond shift between TMAO and urea favors their hydrophobic association. Chemistry 42615-2627 (2018).

    CAS Google Scholar Article

  • Sahlé, CJ et al. Hydration in aqueous solutions of osmolytes: the case of TMAO and urea. Phys. Chem. Chem. Phys. 2211614–11624 (2020).

    CAS PubMed Google Scholar Article

  • Gosh, D. et al. Non-covalent interactions in extended systems described by the effective fragment potential method: Theory and application to nucleobase oligomers. J.Phys. Chem. A 11412739–12754 (2010).

    CAS PubMed Article PubMed Central Google Scholar

  • Mori, H., Hirayama, N., Komeiji, Y. & Mochizuki, Y. Differences in hydration between cis-and trans– platinum: quantum insights by molecular dynamics based on ab initio fragment molecular orbitals (FMO-MD). Calculation. Theor. Chem. 98630–34 (2012).

    CAS Google Scholar Article

  • Matsuda, A. & Mori, H. Theoretical investigation of the hydration structure of the divalent radium ion using fragment molecular orbital dynamics (FMO-MD) simulation. J.Solution Chem. 431669-1675 (2014).

    CAS Google Scholar Article

  • Kuroki, N. & Mori, H. Molecular Dynamics Simulation of Effective Fragment Potential Version 2 (EFP2-MD) for Studying Solution Structures of Ionic Liquids. Chem. Lett. 451009-1011 (2016).

    CAS Google Scholar Article

  • Kuroki, N. & Mori, H. Applicability of molecular dynamics simulations of effective fragment potential version 2 (EFP2-MD) to predict excess properties of mixed solvents. Chem. Phys. Lett. 69482–85 (2018).

    ADS CAS Google Scholar Article

  • Kuroki, N. & Mori, H. Applicability of effective fragment potential version 2 (EFP2-MD) molecular dynamics simulations to predict dynamical properties of liquids, including the supercritical fluid phase. J.Phys. Chem. B 123194-200 (2019).

    CAS PubMed Google Scholar Article

  • Frisch, MJ et al. Gaussian 16, Revision C.01 (Gaussian, Inc, 2019).

    Google Scholar

  • Dunning, TH Jr. Sets of Gaussian bases for use in correlated molecular calculations. I. Boron atoms through neon and hydrogen. J. Chem. Phys. 901007-1023 (1989).

    ADS CAS Google Scholar Article

  • Lee, TJ & Taylor, PR A diagnostic to determine the quality of single-reference electron correlation methods. Int. J.Quant. Chem. 36199-207 (1989).

    Google Scholar article

  • Schmidt, MW et al. General system of atomic and molecular electronic structure. J. Compute. Chem. 141347–1363 (1993).

    CAS Google Scholar Article

  • Su, P. & Li, H. Analysis of the energetic breakdown of covalent bonds and intermolecular interactions. J. Chem. Phys. 131014102 (2009).

    ADS PubMed Google Scholar article

  • Harris, KR & Woolf, LA Pressure and temperature dependence of the self-diffusion coefficient of water and oxygen-18. J. Chem. Soc. Faraday Trans. 1 76377-385 (1980).

    CAS Google Scholar Article

  • Clark, ME, Burnell, EE, Chapman, NR & Hinke, JA Water in barnacle muscle. IV. Actor factors contributing to the reduction of self-diffusion. Biophys. J 39289–299 (1982).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Luzar, A. & Chandler, D. Kinetics of hydrogen bonds in liquid water. Nature 37955–57 (1996).

    ADS CAS Google Scholar Article